
247

Advances in Science and Technology
Research Journal
Volume 10, No. 31, Sept. 2016, pages 247–254
DOI: 10.12913/22998624/64058

Research Article

COMPARISON OF APP INVENTOR 2 AND JAVA IN CREATING PERSONAL
APPLICATIONS FOR ANDROID ON EXAMPLE OF A NOTEPAD

Radosław Kowalczyk1, Łukasz Turczyński1, Kamil Żyła2

1 Student of Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland, e-mail: radikowalczyk@
gmail.com, lukasz2442@gmail.com

2 Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of
Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland, e-mail: k.zyla@pollub.pl

ABSTRACT
Nowadays, there is a common tendency to seek simpler and faster solutions that could
be used in a process of software development. At the same time two other trends can
be observed - rapid increase of mobile applications popularity and introducing IT con-
cepts to non-IT specialists. This is why App Inventor 2 is one of the tools that software
development community is interested in. The goal of this paper is to verify the possi-
bility of using App Inventor as a tool for creating personal applications and compare it
with possibilities given by Java, which is a native environment for Android platform.
Comparison was based on application for managing personal text notes which was
created in both solutions. The application had the same layout as well as analogical
code, and it was the subject of performance tests followed by a survey. Performance
test revealed that both implementations provided efficiency which is good enough
for everyday use and small size personal applications. Survey participants preferred
application built in Java due to its better responsiveness and visual appearance. Con-
cluding, current shape of App Inventor, makes it useless for professionals, but useful
for non-IT specialists for creating personal applications.

Keywords: Java, App Inventor, Android, efficiency comparison, application usability
comparison.

INTRODUCTION

App Inventor was initially developed by
Google which, at the beginning of 2012, trans-
ferred it to Massachusetts Institute of Technology
– its current administrator [12, 15]. App Inventor
tries to make Android applications development
easier and faster, and involve not only people who
are computer science experts [8]. Its homepage
[2] claims that 4.7 mln registered users from 195
countries created 14.9 mln mobile applications
(till the time of writing this paper).

On the other hand, classical method of cre-
ating mobile applications for Android platform
is based on special version of Java and Android
SDK. Almost unlimited capabilities of Java for
Android lead to efficient and nice-looking solu-
tions. This proven and flexible development plat-

form is supported by many tools (e.g. Android
Studio and Eclipse with ADT) and vast commu-
nity of programmers. Although, it requires object-
oriented programming skills, that not everyone is
able to possess [1, 5, 11].

When it comes to App Inventor, it provides
simpler syntax and development environment
[16], although it offers significantly limited func-
tionality. Applications are compiled to “*.apk”, the
same as in case of the classical method (Java for
Android) and can be added to Google Play [13].
In opposite to Java, there is one integrated devel-
opment environment, that allows to create applica-
tions through the web – project files and compila-
tion is moved from a developer’s PC to the web.

Lowering entry barrier and letting non-IT ex-
perts to program is a factor that makes App Inven-
tor interesting. Another reason to write this paper

Received: 2016.05.26
Accepted: 2016.07.05
Published: 2016.09.01

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

248

was a small number of works investigating per-
formance issues and the results of simplifications
as well as limited functionality. Most of publica-
tions focuses on aspects concerning didactics and
fast prototyping [7, 9, 14, 17].

Due to the abovementioned reasons and high
popularity of App Inventor, the authors decided
to verify whether App Inventor is able to provide
functionality sufficient to produce everyday ap-
plications for personal use. Another goal was to
check how it compares to native development en-
vironment like Java for Android.

The following research hypotheses were for-
mulated:
 • H1. Performance of application produced us-

ing App Inventor is as good as in case of Java
for Android.

 • H2. Look and feel of application produced us-
ing App Inventor could be as good as in case
of Java for Android.

Look and feel should be considered as a con-
cept combining responsiveness of a user inter-
face, convenience of navigation, as well as nice
and aesthetical appearance, that are also elements
of the usability concept [3, 4].

In order to verify the formulated hypotheses,
the authors designed and developed an exemplary
application (later called “Notepad”) for everyday
personal use, that allowed to manage personal
notes. App Inventor and Java implementation
shared similar layout and functionality. Then, the
application was the subject of performance test
(speed of performing leading operation) to ver-

ify H1 and the survey to verify H2. In general,
the purpose of the test and survey was to check
whether App Inventor is able to produce applica-
tion, that will be good enough in comparison to
Java (keeping in mind its purpose – being simple
and for personal everyday use) and whether there
will be significant differences in quality.

INTRODUCTION TO THE “NOTEPAD”
APPLICATION – DEVELOPER’S
PERSPECTIVE

Application design

Dissimilarity of App Inventor and Java caused
that authors had to choose a subset of functional-
ity that could be obtained in both technologies in a
similar way, which was also important due to the
performance test. Therefore, application allows to
display, add, edit and delete notes that are stored
in offline database typical for each solution.

The application is consisted of four screens:
1) Screen for displaying the list of notes (mockup

presented in Figure 1) – screen presents the
list of notes. After long click on a note, it could
be deleted or edited on another screen. On the
top of the screen there are two buttons – for
displaying application credits and opening an-
other screen for adding new note.

2) Screen for adding new note (mockup pre-
sented in Figure 2) – screen contains three ele-
ments: text field for a note name (note caption
which is visible on the list of notes), text field

Fig. 1. Mockups of the Notepad application: 1) screen displaying the list of notes;
2) screen for adding new note; 3) screen for editing note

249

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

for the text of note, and button saving it to a
database.

3) Screen for editing a note (mockup presented
in Figure 3) – screen shares layout with the
screen for note addition. The only difference
is button name and purpose of saving changes
to an existing note.

4) Screen for displaying a note – screen shares
layout with the screen for note addition.

The authors chose the subset of layout ele-
ments common for App Inventor and Java in
order to ensure equal chances for both solutions
during the survey concerning look and feel of
developed application. The only difference was
context menu appearing after long click, which
is such a basic layout element that it could not
be omitted. Unfortunately, App Inventor did not
provide such a functionality.

Application implementation

The process of application implementation
confirmed that Java for Android, as a dedicated
development environment, has superior capabili-
ties comparing to App Inventor. Unfortunately,
the latter one lacks functionality which is consid-
ered basic for Android platform. Nevertheless, in
case of simple applications for everyday person-
al use, App Inventor usually provides sufficient
functionality or another way (“bypass”) that al-
lows to obtain similar goal/effect.

When it comes to developing the layout of the
application, App Inventor provides small number

of simple visual component. The authors, in op-
posite to Java, had problems with achieving all
visual effects (layout in general) designed on
mockups. The biggest issue was lacking long-
Click event issued on the list of notes and dis-
playing context menu. It was bypassed by adding
“Delete button” at the bottom of the screen for
editing notes; choosing a note from the list redi-
rects to the mentioned screen. Main menu had to
be constructed manually, without any additional
facilitations, by adding buttons to the horizontal
layout. Moreover, it is not possible to program-
matically create layout elements (e.g. creating a
button depending on user action, instead of show-
ing/hiding it is not possible; button has to be cre-
ated at the application start and then showed or
hidden). At last, the look of generated user inter-
face is more primitive in App Inventor (missing
advanced settings concerning gradients, edges,
etc.). Some of the mentioned issues could be ob-
served in Figures 2 and 3.

When it comes to implementation, Java for
Android requires fair object-oriented program-
ming skills, even in case of simple applications
for everyday use. On the other hand, App Inven-
tor provides simplified development environ-
ment and syntax that is easier to grasp for non-IT
specialists. Listing 1 and Figure 4 is an example
of the same functionality (addition of 100 notes
to a database in a key-value manner) developed
in both solutions.

Application in Java easily exceeded few
hundreds lines of code distributed among dozen

Fig. 2. Layout of the Notepad application in Java: 1) screen displaying the list of notes;

2) screen for adding new note; 3) screen for editing note

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

250

files, which could be seen as a proof of bigger ef-
fort needed to develop the application. Neverthe-
less, it cannot be forgotten that noticeable amount
of that code is generated automatically by an in-
tegrated development environment. Moreover, in
opposite to App Inventor, developer could utilize
many editors and easily reuse the application code.

Basing on the given example, it can be as-
sumed that implementation of applications in App
Inventor would rather be concise and easy to read,
which is also supported by the presence of color
patterns and searching mechanism, that facilitate
finding particular elements of implementation. Un-

fortunately, it is true only for rather small/simple
applications. Developing larger ones require spe-
cial policy concerning model creation and organi-
zation (distribution of the model elements across
the workbench becomes vital). Very often model
becomes too big to manage it conveniently e.g. in-
structions are wider than work area of a screen and
zooming out makes captions illegible, as well as
there is no project tree that allows to jump directly
to the particular element instead of scrolling large
parts of the model. At last, App Inventor projects
could be opened by only one editor, and that editor
does not allow convenient code reusability.

Fig. 3. Layout of the Notepad application in App Inventor – 1) screen displaying the list of notes;

2) screen for adding new note; 3) screen for editing note

Fig. 4. Code/Model in App Inventor counting time of adding 100 notes

251

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

The authors also noticed that, despite shorter
implementation, “*.apk” file obtained from App
Inventor is much larger (1.4MB) than in case
of Java for Android (1MB). It is quite a big dif-
ference as the application is rather small. The
authors checked implementation of App Inven-
tor components (available at [6]), and the most
probable reason is lack of optimization of the
code generator.

PERFORMANCE TESTS

The leading operation for the Notepad is
saving and deleting notes, thus the authors
assumed that it could be used as a representa-
tive marker for the whole application. There-
fore, in order to briefly compare the perfor-
mance of the obtained executables, authors
measured the:
 • time needed to add 100 notes to database,
 • time needed to delete 100 notes from database.

Each note consisted of 676 characters. Both
tests were repeated 30 times for both implemen-
tations. Notes were added to empty database,
and removed from database containing exactly
100 notes.

Timer was started before adding the first note
and stopped after adding the last one. Listing 2.1
and figure 2.4 present the procedure of time mea-

surement for notes addition, which is analogical as
in case of notes deletion. Notes were managed in
a key-value manner using default offline database:
App Inventor – TinyDB; Java for Android – sqlite.
Such databases, despite differences, were chosen
on purpose, to check behavior of each solution cor-
related with its typical (default) database. All tests
were performed on the device running Android
OS 4.3.1, equipped with 2-core CPU (800MHz)
and 768MB RAM.

Those tests indirectly indicate the ability
of Java for Android compiler and App Inventor
code generator to produce efficient code. More-
over, the goal of the tests is to determine if the
efficiency of application produced by App In-
ventor is good enough in everyday use compar-
ing to Java.

RESULTS OF TESTS

When it comes to addition of 100 notes App
Inventor is slightly faster (of 477.4 ms in average)
than Java for Android (Fig. 5). Similarly, when it
comes to deletion of 100 notes – the difference
is 810,5 ms in average (Fig. 6). It is most likely
caused by differences between databases, because
Java for Android is often much faster, e.g. [17].
Nevertheless, such small difference in perfor-
mance is not sufficient to state that any solution
is significantly worse in everyday use, because its

Listing 1. Code in Java for Android counting time of adding 100 notes

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

252

value was aggregated during 100 iterations, and
user is working with one note from time to time.
At last, the speed of application produced from
Java code is more stable than in case of App In-
ventor – standard deviation and average deviation
from median are much lower for Java for Android
(see Table 1).

SURVEY

In order to compare look and feel of both im-
plementations, short survey was conducted. Before
survey, respondents had some time to work with
each application. They have not been told, which
application was developed using App Inventor

Fig. 5. Time of notes addition

Fig. 6. Time of notes deletion

Table 1. Times measured during performance tests (ms)

Parameter
App Inventor Java for Android

Notes addition Notes deletion Notes addition Notes deletion

Arithmetic mean 3 556.6 3 324.0 4 034.0 4 134.5

Standard deviation 409.3 523.5 194.5 167.5

Median 3 515.5 3 252.5 4 0300 4 099.5

Average deviation from median 299.7 439.8 131.4 124.8

253

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

either Java for Android. They were distinguished
only by numbers: number 1 – Java for Android;
number 2 – App Inventor.

The survey consisted of the following questions:
 • Is the application 1 readable for you?
 • Is the application 2 readable for you?
 • Are you fully satisfied by the GUI (Graphical

User Interface) of application 1?
 • Are you fully satisfied by the GUI of applica-

tion 2?
 • Is the application 1 sufficiently responsive for

you?
 • Is the application 2 sufficiently responsive for

you?
 • Which application (1 or 2) do you prefer?

RESULTS OF SERVEY

Authors tried to choose respondents without
strong computer science background and finally
gathered 30 surveys. The age structure of the re-
spondents is presented in Table 2.

The results of the survey are presented in Fig-
ure 7. All respondents claimed that application
implemented in Java for Android was readable,
as well as sufficiently responsive. Most of them
(26 persons) stated that GUI is nice looking and
fully satisfying. App Inventor gathered noticeable

worse opinions. Half of the respondents claimed
that GUI is not fully satisfying and told authors
that it is missing some layout elements and ges-
tures facilitating navigation. About 23% of re-
spondents stated that application implemented
in App Inventor is not sufficiently responsive, as
well as not readable enough. Generally, respon-
dents preferred application developed in Java for
Android (23 to 7 persons).

The obtained results are not surprising. When
it comes to user interface and App Inventor,
worse opinions are most likely caused by limited
set of gestures and poor functionality concerning
visual aspects, like colors and shapes of edges,
small palette of colors, etc.. In case of both imple-
mentations, the respondents during the survey did
not claim that the number of saved notes influ-
enced the efficiency of the application, however,
their number was rather small. Moreover, some of
them complained that switching to another screen
lasted noticeably longer than in case of Java for
Android, which impaired general satisfaction.

CONCLUSIONS

The goal of this paper was to check the pos-
sibility of using App Inventor as a tool for creat-
ing personal applications, by comparing it with

Fig. 7. Survey results

Table 2. Age structure of the respondents

Years old <20 20–25 26–30 31–40 40<

Number of respondents 2 20 4 0 4

Percentage of respondents 6.7% 66.7% 13.3% 0% 13.3%

Advances in Science and Technology Research Journal Vol. 10 (31), 2016

254

Java for Android. Application developed us-
ing App Inventor successfully met the require-
ments of displaying, saving, writing and delet-
ing notes. However, it turned out that despite a
large number of build-in objects, a lot of useful
visual controls and events, that are available in
Java and useful in creating Notepad, are missing
(disadvantage common for Model-Driven Engi-
neering solutions [10]). Moreover, necessity to
implement whole functionality of the applica-
tion screen in one view (container) aggregates a
lot of building blocks in one place, which makes
the code less clear, more vulnerable to errors and
more difficult to maintain. Results of the survey,
regarding appearance of both applications, con-
firmed deficiencies of App Inventor in creating
complex and intuitive user interfaces.

App Inventor can be recommended for
people without special programming skills, al-
though for simple personal projects only. It is
not suitable for creating business applications In
this case, the advantage of Java, with regard to
the capabilities and efficiency, is indisputable.

Summarizing, performance of both ap-
plications was good enough for everyday use,
although App Inventor might be significantly
slower in case of more complex applications
(H1). Currently, look and feel of applications
produced using App Inventor cannot be as good
as in case of Java for Android (H2).

Concluding, App Inventor allows to develop
uglier applications, although generally readable
as well as sufficiently responsive, thus able to
fulfill their purpose – being simple and for per-
sonal everyday use.

REFERENCES

1. Android developers homepage, developer.android.
com [21.05.2016].

2. App Inventor homepage, http://appinventor.mit.
edu [21.05.2016].

3. Borys M., Miłosz M., Mobile application usability
testing in quasi-real conditions a case study of a
mobile eye tracker. 8th International Conference
on Human System Interactions. IEEE, 2015.

4. Borys M., Plechawska-Wójcik M., Usability and
accessibility testing of mobile application interfac-

es. Nierówności społeczne a wzrost gospodarczy,
35, 2013, 63-77.

5. Conder S., Darcey L., Android wireless application
development. Addison-Wesley, 2011.

6. Google code archive: App Inventor for Android,
https://code.google.com/p/app-inventor-for-an-
droid/ [21.05.2016].

7. Grover S., Pea R., Using a discourse-intensive peda-
gogy and android’s App Inventor for introducing
computational concepts to middle school students.
Proc. of the 44th ACM technical symposium on
Computer science education. ACM, New York 2013.

8. Jordan L., Greyling P.: Practical Android Projects.
Apress, 2011.

9. Karakus M., Uludag S., Guler E., Turner S. W., Ugur
A., Teaching computing and programming funda-
mentals via App Inventor for Android. 2012 Interna-
tional Conference on Information Technology Based
Higher Education and Training. IEEE, 2012.

10. Kęsik J., Żyła K., Współczesne Technologie In-
formatyczne. Technologie MDE w projektowaniu
aplikacji internetowych. Politechnika Lubelska.
Lublin, 2011.

11. Kopniak P., Programming interfaces of accelerom-
eters for Smartphone type mobile devices. Pomiary
automatyka kontrola, 12, 2011, 1477-1479.

12. Mitchell J., MIT launches Center for Mobile
Learning with support from Google. readwrite,
2011. http://readwrite.com/2011/08/16/mit_launch-
es_center_for_mobile_learning_with_suppo
[22.05.2016].

13. Publishing Apps to Google Play (App Inventor
2), http://appinventor.mit.edu/explore/ai2/google-
play.html [21.05.2016].

14. Roy K., Rousse W.C., DeMeritt D.B., Comparing
the mobile novice programming environments:
App Inventor for Android vs. GameSalad. Fron-
tiers in Education Conference. IEEE, 2012.

15. Wolber D., App Inventor discontinued: the good,
the bad and the ugly. App Inventor blog, 2011.
https://appinventorblog.com/2011/08/09/app-
inventor-discontinued-the-good-the-bad-and-the-
ugly/ [21.05.2016].

16. Wolber D., Abelson H., Spertus E., Looney L., App
Inventor: Create your own Android apps. O’Reilly
Media, 2011.

17. Żyła K., Wydajność implementacji podstawowych
metod całkowania w środowisku APP Inventor.
Informatyka, automatyka, pomiary w gospodarce
i ochronie środowiska, 1, 2015, 45-48.

